Problem Description
Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
Examples
Example 1: Input: root = [1,2,3,null,5,null,4] Output: [1,3,4] Example 2: Input: root = [1,null,3] Output: [1,3] Example 3: Input: root = [] Output: []
Python Solution
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
result = []
queue = deque([root])
while queue:
level_size = len(queue)
for i in range(level_size):
node = queue.popleft()
# If it's the last node in the level
if i == level_size - 1:
result.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return result
DFS Solution:
class Solution:
def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
def dfs(node: TreeNode, level: int, result: List[int]) -> None:
if not node:
return
# Add the first node we see at this level
if level == len(result):
result.append(node.val)
# Visit right first to get right side view
dfs(node.right, level + 1, result)
dfs(node.left, level + 1, result)
result = []
dfs(root, 0, result)
return result
Java Solution
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List rightSideView(TreeNode root) {
List result = new ArrayList<>();
if (root == null) {
return result;
}
Queue queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int levelSize = queue.size();
for (int i = 0; i < levelSize; i++) {
TreeNode node = queue.poll();
// If it's the last node in the level
if (i == levelSize - 1) {
result.add(node.val);
}
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
}
return result;
}
}
C++ Solution
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector rightSideView(TreeNode* root) {
vector result;
if (!root) {
return result;
}
queue q;
q.push(root);
while (!q.empty()) {
int levelSize = q.size();
for (int i = 0; i < levelSize; i++) {
TreeNode* node = q.front();
q.pop();
// If it's the last node in the level
if (i == levelSize - 1) {
result.push_back(node->val);
}
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
}
return result;
}
};
JavaScript Solution
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var rightSideView = function(root) {
if (!root) {
return [];
}
const result = [];
const queue = [root];
while (queue.length) {
const levelSize = queue.length;
for (let i = 0; i < levelSize; i++) {
const node = queue.shift();
// If it's the last node in the level
if (i === levelSize - 1) {
result.push(node.val);
}
if (node.left) {
queue.push(node.left);
}
if (node.right) {
queue.push(node.right);
}
}
}
return result;
};
C# Solution
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public IList RightSideView(TreeNode root) {
IList result = new List();
if (root == null) {
return result;
}
Queue queue = new Queue();
queue.Enqueue(root);
while (queue.Count > 0) {
int levelSize = queue.Count;
for (int i = 0; i < levelSize; i++) {
TreeNode node = queue.Dequeue();
// If it's the last node in the level
if (i == levelSize - 1) {
result.Add(node.val);
}
if (node.left != null) {
queue.Enqueue(node.left);
}
if (node.right != null) {
queue.Enqueue(node.right);
}
}
}
return result;
}
}
Complexity Analysis
- Time Complexity: O(n) where n is the number of nodes in the tree
- Space Complexity: O(w) where w is the maximum width of the tree
Solution Explanation
There are two main approaches to solve this problem:
- BFS (Level Order Traversal):
- Process level by level
- Take rightmost node at each level
- Use queue for traversal
- More intuitive approach
- DFS (Preorder with modification):
- Visit right subtree first
- Track level depth
- First node at each level is rightmost
- More space efficient
Key Points
- Level tracking
- Queue/Stack usage
- Tree traversal
- Edge cases
Common Pitfalls
- Empty tree handling
- Single node trees
- Unbalanced trees
- Level size tracking