Problem Description
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node's values in the path.
Given the root
of a binary tree, return the maximum path sum of any non-empty path.
Examples
Example 1: Input: root = [1,2,3] Output: 6 Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6. Example 2: Input: root = [-10,9,20,null,null,15,7] Output: 42 Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Python Solution
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
def maxPathSum(root: Optional[TreeNode]) -> int:
max_sum = float('-inf')
def max_gain(node):
nonlocal max_sum
if not node:
return 0
# Get max gain from left and right subtrees
left_gain = max(max_gain(node.left), 0)
right_gain = max(max_gain(node.right), 0)
# Current path sum including node and both subtrees
current_path_sum = node.val + left_gain + right_gain
# Update max_sum if current path is larger
max_sum = max(max_sum, current_path_sum)
# Return maximum gain for parent node
return node.val + max(left_gain, right_gain)
max_gain(root)
return max_sum
Java Solution
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int maxSum = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
maxGain(root);
return maxSum;
}
private int maxGain(TreeNode node) {
if (node == null) {
return 0;
}
// Get max gain from left and right subtrees
int leftGain = Math.max(maxGain(node.left), 0);
int rightGain = Math.max(maxGain(node.right), 0);
// Current path sum including node and both subtrees
int currentPathSum = node.val + leftGain + rightGain;
// Update maxSum if current path is larger
maxSum = Math.max(maxSum, currentPathSum);
// Return maximum gain for parent node
return node.val + Math.max(leftGain, rightGain);
}
}
C++ Solution
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
int maxSum = INT_MIN;
int maxGain(TreeNode* node) {
if (!node) {
return 0;
}
// Get max gain from left and right subtrees
int leftGain = max(maxGain(node->left), 0);
int rightGain = max(maxGain(node->right), 0);
// Current path sum including node and both subtrees
int currentPathSum = node->val + leftGain + rightGain;
// Update maxSum if current path is larger
maxSum = max(maxSum, currentPathSum);
// Return maximum gain for parent node
return node->val + max(leftGain, rightGain);
}
public:
int maxPathSum(TreeNode* root) {
maxGain(root);
return maxSum;
}
};
JavaScript Solution
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxPathSum = function(root) {
let maxSum = -Infinity;
const maxGain = (node) => {
if (!node) {
return 0;
}
// Get max gain from left and right subtrees
const leftGain = Math.max(maxGain(node.left), 0);
const rightGain = Math.max(maxGain(node.right), 0);
// Current path sum including node and both subtrees
const currentPathSum = node.val + leftGain + rightGain;
// Update maxSum if current path is larger
maxSum = Math.max(maxSum, currentPathSum);
// Return maximum gain for parent node
return node.val + Math.max(leftGain, rightGain);
};
maxGain(root);
return maxSum;
};
C# Solution
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private int maxSum = int.MinValue;
public int MaxPathSum(TreeNode root) {
MaxGain(root);
return maxSum;
}
private int MaxGain(TreeNode node) {
if (node == null) {
return 0;
}
// Get max gain from left and right subtrees
int leftGain = Math.Max(MaxGain(node.left), 0);
int rightGain = Math.Max(MaxGain(node.right), 0);
// Current path sum including node and both subtrees
int currentPathSum = node.val + leftGain + rightGain;
// Update maxSum if current path is larger
maxSum = Math.Max(maxSum, currentPathSum);
// Return maximum gain for parent node
return node.val + Math.Max(leftGain, rightGain);
}
}
Complexity Analysis
- Time Complexity: O(n) where n is the number of nodes in the tree
- Space Complexity: O(h) where h is the height of the tree due to recursion stack
Solution Explanation
This solution uses a recursive DFS approach:
- Key concept:
- Path contribution
- Maximum gain
- Global tracking
- Algorithm steps:
- Calculate gains
- Track max path
- Handle negatives
- Return contributions
Key points:
- Handle negative values
- Consider all paths
- Efficient traversal
- Global state management