15. 3Sum

Medium

Problem Description

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

Examples

Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation: 
- nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
- nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
- nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.

Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.

Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Jump to Solution: Python Java C++ JavaScript C#

Python Solution

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        nums.sort()
        result = []
        
        for i in range(len(nums) - 2):
            if i > 0 and nums[i] == nums[i - 1]:
                continue
                
            left, right = i + 1, len(nums) - 1
            
            while left < right:
                total = nums[i] + nums[left] + nums[right]
                
                if total == 0:
                    result.append([nums[i], nums[left], nums[right]])
                    while left < right and nums[left] == nums[left + 1]:
                        left += 1
                    while left < right and nums[right] == nums[right - 1]:
                        right -= 1
                    left += 1
                    right -= 1
                elif total < 0:
                    left += 1
                else:
                    right -= 1
                    
        return result

Java Solution

class Solution {
    public List> threeSum(int[] nums) {
        Arrays.sort(nums);
        List> result = new ArrayList<>();
        
        for (int i = 0; i < nums.length - 2; i++) {
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            
            int left = i + 1;
            int right = nums.length - 1;
            
            while (left < right) {
                int total = nums[i] + nums[left] + nums[right];
                
                if (total == 0) {
                    result.add(Arrays.asList(nums[i], nums[left], nums[right]));
                    while (left < right && nums[left] == nums[left + 1]) {
                        left++;
                    }
                    while (left < right && nums[right] == nums[right - 1]) {
                        right--;
                    }
                    left++;
                    right--;
                } else if (total < 0) {
                    left++;
                } else {
                    right--;
                }
            }
        }
        
        return result;
    }
}

C++ Solution

class Solution {
public:
    vector> threeSum(vector& nums) {
        sort(nums.begin(), nums.end());
        vector> result;
        
        for (int i = 0; i < nums.size() - 2; i++) {
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            
            int left = i + 1;
            int right = nums.size() - 1;
            
            while (left < right) {
                int total = nums[i] + nums[left] + nums[right];
                
                if (total == 0) {
                    result.push_back({nums[i], nums[left], nums[right]});
                    while (left < right && nums[left] == nums[left + 1]) {
                        left++;
                    }
                    while (left < right && nums[right] == nums[right - 1]) {
                        right--;
                    }
                    left++;
                    right--;
                } else if (total < 0) {
                    left++;
                } else {
                    right--;
                }
            }
        }
        
        return result;
    }
};

JavaScript Solution

/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var threeSum = function(nums) {
    nums.sort((a, b) => a - b);
    const result = [];
    
    for (let i = 0; i < nums.length - 2; i++) {
        if (i > 0 && nums[i] === nums[i - 1]) {
            continue;
        }
        
        let left = i + 1;
        let right = nums.length - 1;
        
        while (left < right) {
            const total = nums[i] + nums[left] + nums[right];
            
            if (total === 0) {
                result.push([nums[i], nums[left], nums[right]]);
                while (left < right && nums[left] === nums[left + 1]) {
                    left++;
                }
                while (left < right && nums[right] === nums[right - 1]) {
                    right--;
                }
                left++;
                right--;
            } else if (total < 0) {
                left++;
            } else {
                right--;
            }
        }
    }
    
    return result;
};

C# Solution

public class Solution {
    public IList> ThreeSum(int[] nums) {
        Array.Sort(nums);
        var result = new List>();
        
        for (int i = 0; i < nums.Length - 2; i++) {
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            
            int left = i + 1;
            int right = nums.Length - 1;
            
            while (left < right) {
                int total = nums[i] + nums[left] + nums[right];
                
                if (total == 0) {
                    result.Add(new List { nums[i], nums[left], nums[right] });
                    while (left < right && nums[left] == nums[left + 1]) {
                        left++;
                    }
                    while (left < right && nums[right] == nums[right - 1]) {
                        right--;
                    }
                    left++;
                    right--;
                } else if (total < 0) {
                    left++;
                } else {
                    right--;
                }
            }
        }
        
        return result;
    }
}

Complexity Analysis

Solution Explanation

This solution uses the two-pointer technique:

Key points: